

NASA Planet Finding Program

Zlatan Tsvetanov (NASA HQ) TPF Program Scientist February 15, 2005

Extrasolar Planet Search - Goals & Projects

- Basic Goal Search Life Outside the Solar System
 - Aim to find scientific answers to fundamental questions:
 - Are we alone? Where did we come from?
- Projects
 - Ground-based Interferometers:
 - Keck Interferometer (KI), and Outrigger Telescopes Project (OTP)
 - Large Binocular Telescope Interferometer (LBTI)
 - Kepler Mission (Discovery class)
 - Space Interferometry Mission (SIM)
 - Terrestrial Planet Finder (TPF)

National Aeronautics and Space Administration

Four Indirect Planet Detection Methods

- **Radial Velocities**
- **Astrometric**

A few detected

1995 onward 130+ planets 18 M_E min. mass

- **Transit**
 - **Microlensing**

1 well established

Z.Tsvetanov

Kepler - Project Overview

Salient Features

- Habitable Zone Planet Finder (indirect, transits)
- Heliocentric Earth-Trailing Orbit
- Science Instrument: Photometer (0.95m aperture, 42 CCD's)
- Launch date: October 2007
- Launch Vehicle: Delta 2925-10L
- Operational life: 4 years
- Possible Extended Mission : Up to 2 Additional Years

Science

Explore the structure and diversity of planetary systems. Survey a large sample of stars to:

- Determine the <u>frequency of terrestrial and larger</u> planets in or near the habitable zone of a wide variety of spectral types of stars;
- Determine the distributions of sizes and semi-major axes of these planets;
- Estimate the frequency and orbital distributions of planets in multiple-stellar systems;
- Determine the distributions of semi-major axis, albedo, size, mass and density of short-period giant planets;
- Identify additional members of each photometrically discovered planetary system using complementary techniques; and
- Determine the properties of those stars that harbor planetary systems.

Kepler Optics Status

Lightweight Primary Mirror

- Primary mirror is in polishing (@ Brashear)
- Schmidt corrector plate also in polishing (@ Brashear)

Kepler Detectors Status

- Detector Chip Assemblies (DCA) built from thinned wafers
 - Order for 50 flight units, fly 42 units
 - Produced in batches, built in groups of 4, with new group started every 10-14 days
 - Lead time for production and test of DCAs from thinned wafers is 7-8 weeks
- First Batch Used For Kepler Science CCD Design and Development
 - Deliverables: 4 Mechanical grade, 6 Evaluation grade, 3 Engineering grade (in-house)
- Current status:
 - 18 out of 50 DCA units have arrived at BATC
 - Next delivery due at BATC 7 Oct 2004

Kepler - Project Summary Status

- Project has successfully passed
 - ✓ PDR (Preliminary Design Review) 12-54 Oct 2004
 - √ Confirmation Review 2 Dec 2004
 - ✓ Officially transitioned to Phase C/D 25 Jan 2005
- Detector Chip Assemblies are arriving approximately on schedule
- Kepler project has been directed to absorb a \$35M cut
 - Project is working on a solution